Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 24(5): 455-461, 2022 05.
Article in English | MEDLINE | ID: mdl-35218945

ABSTRACT

Tracking new and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has become increasingly important for public health responses, primarily because of variant-dependent transmission, disease severity, and treatment decisions. This evaluation compared Seegene Technologies Novaplex SARS-CoV-2 Variants I, II, and IV (I,II&IV) assays to detect known SARS-CoV-2 variants using traditional spike gene Sanger sequencing results as the gold standard reference. Both RNA extraction and extraction-free protocols were assessed. A total of 156 samples were included in this study. There was 100% (109/109) overall agreement (95% CI, 96.7%-100%) between the spike gene sequencing and the I,II&IV results using extracted RNA for the variants included in the Novaplex assay menus. The RNA extraction-free method was 91.7% (143/156) as sensitive (95% CI, 86.2%-95.5%) as the traditional RNA extraction method. Using the extraction-free method on samples with higher cycle threshold values (>30) resulted in some mutations not being detected, presumably due to lower nucleic acid concentrations in the original samples. In conclusion, the I,II&IV assays provide an accurate, rapid, and less labor-intensive method for detecting SARS-CoV-2 and identifying known variants of interest and concern. The RNA extraction-free method for samples with cycle threshold of <30 could be cost-effective for surveillance purposes. However, spike gene sequencing retains the advantage of detecting more and new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , RNA , SARS-CoV-2/genetics
2.
Cell Calcium ; 37(4): 301-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15755491

ABSTRACT

The expression of two different transcripts for Ca(V)1.2 in rat tissues mirrors that which has previously been described for human tissue, in that expression of transcripts expressing exon 1a is predominant only in heart, whereas expression of transcripts expressing exon 1b is greater in smooth muscle rich tissues such as aorta and intestine. Transcripts expressing exon 1b also predominate in brain and in diaphragm. Western blots indicate that the N-terminus coded for by exon 1b is present in much of the protein in all these tissues except heart. The promoter just upstream of exon 1b has been cloned, sequenced and utilized to drive expression of luciferase in smooth muscle A7r5 cells, cardiac HL-1 cells, skeletal muscle L6 cells and neuronal PC12 cells. The nucleotide sequence of the promoter exhibits 80% identity with the equivalent promoter previously identified in humans and 94% identity with the sequence of the equivalent region of the mouse genome. Evidence in favor of still another promoter upstream of exon 2 has been uncovered.


Subject(s)
Calcium Channels, L-Type/biosynthesis , Promoter Regions, Genetic , Animals , Base Sequence , Brain/metabolism , Diaphragm/metabolism , Exons , Gene Expression , Humans , Male , Mice , Molecular Sequence Data , Muscle, Smooth/metabolism , Myocardium/metabolism , PC12 Cells , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...